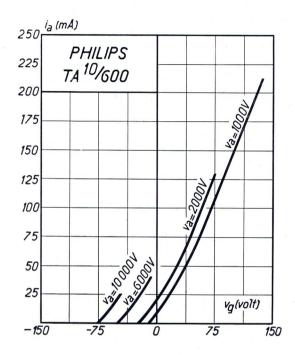
PHILIPS SENDERRÖHRE

1/3 der natürl. Grösse

 $TA^{10}/_{600}$


Diese Senderröhre mit einer normalen Anodenspannung von 10 000 Volt wird bis zu 4000 Volt noch einen guten Wirkungsgrad liefern. Sie ist verwendbar für Schiffssender. In untenstehender Tabelle ist bei einer Anodenspannung von 10.000 Volt die Nutzleistung für verschiedene Werte des Wirkungsgrades angegeben.

Die Anodenspannung kann bis auf 12000 Volt erhöht werden.

Wirkungsgrad	40	50	60	70	75	0/0
Eingangsleistung	330	400	500	670	800	Watt
Nutzleistung	130	200	300	470	600	Watt
Anodenverlust	200	200	200	200	200	Watt

PHILIPS SENDERRÖHRE

 $TA^{10}/_{600}$

Heizspannung												$v_f={ m ca.}{ m f 12,5}{ m V}$
Heizstrom						,				·		$i_f = \text{ca. } 6.3 \text{ A}$
Sättigungsstrom												$i_s = 260 \text{ mA}$
Anodenspannung												$v_a = 4000 - 12000 \text{ V}$
Zulässiger Anodenverli	ıst											$w_a \equiv 200 \text{ W}$
Anodenverlust geprüft	au	f					·					$w_{at} = 300 \text{ W}$
Verstärkungsfaktor .		٠	•					•				g = ca. 125
Durchgriff								•				$D \equiv {\sf ca.} \; {\sf 0.8} \; {}^{\sf 0}/_{\sf 0}$
Steilheit							٠.					S = ca. 1.7 mA/V
Inn. Widerstand									×			$R_i = \text{ca. } 75000 \ \Omega$
Sättigungsspannung in	dei	r	Gitt	erf	läc:	he						$v_s \equiv$ ca. 500 V
Grösster Durchmesser												d = 120 mm
Grösste Länge		•	•								•	l = 320 mm